Contents:
Library ConCert.Embedding.pcuic.PCUICTranslate
From MetaCoq.PCUIC Require Import PCUICAst.
From MetaCoq.PCUIC Require Import PCUICLiftSubst.
From MetaCoq.Common Require Import BasicAst.
From MetaCoq.Utils Require Import monad_utils.
From MetaCoq.Utils Require Import MCProd.
From MetaCoq.Utils Require Import MCList.
From MetaCoq.Utils Require Import MCString.
From MetaCoq.Utils Require Import bytestring.
From MetaCoq.Template Require Import Loader.
From ConCert.Embedding Require Import Ast.
From ConCert.Embedding Require Import Notations.
From ConCert.Embedding Require Import Misc.
From ConCert.Embedding Require Import Utils.
From ConCert.Utils Require Import Env.
From ConCert.Utils Require Extras.
From ConCert.Utils Require StringExtra.
From Coq Require Import List.
From Coq Require Import String.
Module TCString := bytestring.String.
Module P := PCUICAst.
Import MCMonadNotation.
Import ListNotations.
From MetaCoq.PCUIC Require Import PCUICLiftSubst.
From MetaCoq.Common Require Import BasicAst.
From MetaCoq.Utils Require Import monad_utils.
From MetaCoq.Utils Require Import MCProd.
From MetaCoq.Utils Require Import MCList.
From MetaCoq.Utils Require Import MCString.
From MetaCoq.Utils Require Import bytestring.
From MetaCoq.Template Require Import Loader.
From ConCert.Embedding Require Import Ast.
From ConCert.Embedding Require Import Notations.
From ConCert.Embedding Require Import Misc.
From ConCert.Embedding Require Import Utils.
From ConCert.Utils Require Import Env.
From ConCert.Utils Require Extras.
From ConCert.Utils Require StringExtra.
From Coq Require Import List.
From Coq Require Import String.
Module TCString := bytestring.String.
Module P := PCUICAst.
Import MCMonadNotation.
Import ListNotations.
Reserved Notation "T⟦ ty ⟧ " (at level 5).
Translation of types to PCUIC terms. Universal types become Pi-types with the
first argument being of type Set. Keeping them in Set is crucial,
since we don't have to deal with universe levels
Fixpoint type_to_term (ty : type) : term :=
match ty with
| tyInd i => tInd (mkInd (kername_of_string i) 0) []
| tyForall nm ty => tProd (aRelevant (nNamed (TCString.of_string nm))) (tSort Universe.type0) T⟦ty⟧
| tyVar nm => tVar (TCString.of_string nm)
| tyApp ty1 ty2 => tApp T⟦ty1⟧ T⟦ty2⟧
| tyArr ty1 ty2 =>
(* NOTE: we have to lift indices for the codomain,
since in Coq arrows are Pi types and introduce a binder *)
tProd (aRelevant nAnon) T⟦ty1⟧ (lift0 1 T⟦ty2⟧)
| tyRel i => tRel i
end
where "T⟦ ty ⟧ " := (type_to_term ty).
match ty with
| tyInd i => tInd (mkInd (kername_of_string i) 0) []
| tyForall nm ty => tProd (aRelevant (nNamed (TCString.of_string nm))) (tSort Universe.type0) T⟦ty⟧
| tyVar nm => tVar (TCString.of_string nm)
| tyApp ty1 ty2 => tApp T⟦ty1⟧ T⟦ty2⟧
| tyArr ty1 ty2 =>
(* NOTE: we have to lift indices for the codomain,
since in Coq arrows are Pi types and introduce a binder *)
tProd (aRelevant nAnon) T⟦ty1⟧ (lift0 1 T⟦ty2⟧)
| tyRel i => tRel i
end
where "T⟦ ty ⟧ " := (type_to_term ty).
Translating branches of the eCase construct. Note that MetaCoq uses indices
to represent constructors. Indices are corresponding positions in the list of
constructors for a particular inductive type
Definition etrans_branch (params : list type)(bs : list (pat * term))
(c : constr) : branch term :=
let nm := fst c in
let tys := remove_proj c in
let tparams := map type_to_term params in
let o_pt_e := find (fun x =>(fst x).(pName) =? nm) bs in
let dummy := tVar (TCString.of_string (nm ++ ": not found"))%string in
match o_pt_e with
| Some pt_e =>
if (Nat.eqb #|(fst pt_e).(pVars)| #|tys|) then
let bctx :=
map (fun '(nm,ty) => vass (aRelevant (nNamed (TCString.of_string nm)))ty)
(combine (fst pt_e).(pVars) (map type_to_term tys)) in
{| bcontext := bctx ;
bbody := snd pt_e|}
(* (List.length (fst pt_e).(pVars), pat_to_lam (snd pt_e) (rev tparams) vars_tys) *)
else
{| bcontext := [];
bbody := tVar (TCString.of_string (nm ++ ": arity does not match"))%string |}
| None => {| bcontext := [] ;
bbody := dummy |}
end.
Open Scope list.
(c : constr) : branch term :=
let nm := fst c in
let tys := remove_proj c in
let tparams := map type_to_term params in
let o_pt_e := find (fun x =>(fst x).(pName) =? nm) bs in
let dummy := tVar (TCString.of_string (nm ++ ": not found"))%string in
match o_pt_e with
| Some pt_e =>
if (Nat.eqb #|(fst pt_e).(pVars)| #|tys|) then
let bctx :=
map (fun '(nm,ty) => vass (aRelevant (nNamed (TCString.of_string nm)))ty)
(combine (fst pt_e).(pVars) (map type_to_term tys)) in
{| bcontext := bctx ;
bbody := snd pt_e|}
(* (List.length (fst pt_e).(pVars), pat_to_lam (snd pt_e) (rev tparams) vars_tys) *)
else
{| bcontext := [];
bbody := tVar (TCString.of_string (nm ++ ": arity does not match"))%string |}
| None => {| bcontext := [] ;
bbody := dummy |}
end.
Open Scope list.
Reserved Notation "t⟦ e ⟧ Σ" (at level 5).
Fixpoint expr_to_term (Σ : global_env) (e : expr) : term :=
match e with
| eRel i => tRel i
| eVar nm => tVar (TCString.of_string nm)
| eLambda nm ty b => tLambda (aRelevant (nNamed (TCString.of_string nm))) T⟦ty⟧ t⟦b⟧Σ
| eTyLam nm b => tLambda (aRelevant (nNamed (TCString.of_string nm))) (tSort Universe.type0) t⟦b⟧Σ
| eLetIn nm e1 ty e2 => tLetIn (aRelevant (nNamed (TCString.of_string nm))) t⟦e1⟧Σ T⟦ty⟧ t⟦e2⟧Σ
| eApp e1 e2 => tApp t⟦e1⟧Σ t⟦e2⟧Σ
| eConstr i t =>
match (resolve_constr Σ i t) with
| Some c => tConstruct (mkInd (kername_of_string i) 0) (c.1.2) []
| None => tConstruct (mkInd (kername_of_string (i ++ ":no_declaration_found")) 0) 0 []
end
| eConst nm => tConst (kername_of_string nm) []
| eCase nm_i ty2 e bs =>
let (nm, params) := nm_i in
let ctx := map (fun x => vass (aRelevant nAnon) (type_to_term x)) params in
let pty := (mkApps (tInd (mkInd (kername_of_string nm) 0) [])
(to_extended_list ctx)) in
let pinfo :=
{| puinst := [];
pparams := map type_to_term params;
pcontext := [vass (aRelevant (nNamed "a"%bs)) pty];
preturn := lift0 1 (type_to_term ty2) |} in
match (resolve_inductive Σ nm) with
| Some v =>
if Nat.eqb (fst v) #|params| then
let cs := snd v in
let tbs := map (fun_prod id (expr_to_term Σ)) bs in
let branches := map (etrans_branch params tbs) cs in
let ci := {| ci_ind := mkInd (kername_of_string nm) 0;
ci_npar := fst v;
ci_relevance := Relevant |} in
tCase ci pinfo t⟦e⟧Σ branches
else tVar (TCString.of_string "Case: number of params doesn't match with the definition")
| None => tVar (TCString.of_string (nm ++ "not found")%string)
end
| eFix nm nv ty1 ty2 b =>
let tty1 := T⟦ty1⟧ in
let tty2 := T⟦ty2⟧ in
let ty := tProd (aRelevant nAnon) tty1 (lift0 1 tty2) in
(* NOTE: we have to lift the indices in tty1 because tRel 0
corresponds to the recursive call *)
let body := tLambda (aRelevant (nNamed (TCString.of_string nv))) (lift0 1 tty1) t⟦b⟧Σ in
tFix [(mkdef _ (aRelevant (nNamed (TCString.of_string nm))) ty body 0)] 0
| eTy ty => T⟦ty⟧
end
where "t⟦ e ⟧ Σ":= (expr_to_term Σ e).
Import Basics.
Definition of_ename (e : option ename) : aname :=
match e with
| Some e' =>
let (mp,unqualified_nm) := kername_of_string e' in
aRelevant (nNamed unqualified_nm)
| None => aRelevant nAnon
end.
Translation of constructors of parameterized inductive types requires
non-trivial manipulation of De Bruijn indices.
Definition mkArrows_rec (ind_name : ename) (nparam : nat) :=
fix rec (n : nat) (proj_tys : list (option ename * type)) :=
match proj_tys with
| [] => (* this is a return type of the constructor *)
mkApps (tRel (n + nparam)) (map tRel (rev (seq n nparam)))
| (proj, ty) :: tys' =>
let res :=
match ty with
| tyInd nm => if eqb nm ind_name then
tRel n else type_to_term ty
| tyApp ty1 ty2 =>
match (decompose_inductive ty1) with
| Some (nm, tys) =>
if eqb nm ind_name then
mkApps (tRel (n+nparam)) (map (compose (lift0 n) type_to_term)
(tys ++ [ty2])) else type_to_term ty
| None => type_to_term ty
end
| tyRel i => tRel (i+n)
| _ => type_to_term ty (* TODO: check how it works for other
type constructors applied to parameters of the inductive *)
end in tProd (of_ename proj) res (rec (1+n) tys')
end.
Definition mkArrows indn nparam := mkArrows_rec indn nparam 0.
Definition trans_one_constr (ind_name : ename) (nparam : nat) (c : constr) : term :=
let (ctor_name, tys) := c in mkArrows ind_name nparam tys.
Fixpoint gen_params n := match n with
| O => []
| S n' => let nm := ("A" ++ string_of_nat n)%bs in
let decl := (tSort Universe.type0) in
gen_params n' ++ [mkdecl (aRelevant (nNamed nm)) None (decl)]
end.
Definition trans_global_dec (gd : global_dec) : mutual_inductive_entry :=
match gd with
| gdInd nm nparam cs r =>
let (mp,unqualified_nm) := kername_of_string nm in
let oie := {|
mind_entry_typename := unqualified_nm;
mind_entry_arity := tSort Universe.type0;
mind_entry_template := false;
mind_entry_consnames :=
map (fun c => let (mp,unqualified_nm) := kername_of_string c.1 in
unqualified_nm) cs;
mind_entry_lc := map (trans_one_constr nm nparam) cs |}
in
let mie := {| mind_entry_record := if r then (Some (Some unqualified_nm)) else None;
mind_entry_finite := if r then BiFinite else Finite;
mind_entry_params := gen_params nparam;
mind_entry_inds := [oie];
mind_entry_universes := Monomorphic_ctx;
mind_entry_private := None; |} in
mie
end.
Fixpoint add_prefix_ty (ty : type) (ps : env string) :=
match ty with
| tyInd nm =>
let p := Extras.with_default "" (lookup ps nm) in
tyInd (p ++ nm)%string
| tyForall nm ty1 => tyForall nm (add_prefix_ty ty1 ps)
| tyApp ty1 ty2 => tyApp (add_prefix_ty ty1 ps) (add_prefix_ty ty2 ps)
| tyVar _ | tyRel _ => ty
| tyArr ty1 ty2 => tyArr (add_prefix_ty ty1 ps) (add_prefix_ty ty2 ps)
end.
Fixpoint add_prefix (e : expr) (ps : env string) :=
match e with
| eRel _ | eVar _ => e
| eLambda nm ty e1 => eLambda nm (add_prefix_ty ty ps) (add_prefix e1 ps)
| eTyLam nm e1 => eTyLam nm (add_prefix e1 ps)
| eLetIn nm e1 ty e2 => eLetIn nm (add_prefix e1 ps)
(add_prefix_ty ty ps)
(add_prefix e2 ps)
| eApp e1 e2 => eApp (add_prefix e1 ps) (add_prefix e2 ps)
| eConstr ind_nm ctor_nm =>
let p := Extras.with_default "" (lookup ps ind_nm) in
eConstr (p ++ ind_nm)%string ctor_nm
| eConst nm =>
let p := Extras.with_default "" (lookup ps nm) in
eConst (p ++ nm)%string
| eCase (ind_nm, tys) ty e1 brs =>
let p := Extras.with_default "" (lookup ps ind_nm) in
eCase ((p ++ ind_nm)%string, map (fun ty => add_prefix_ty ty ps) tys)
(add_prefix_ty ty ps)
(add_prefix e1 ps)
(map (on_snd (fun e => add_prefix e ps)) brs)
| eFix fix_nm nm ty1 ty2 e1 =>
eFix fix_nm nm
(add_prefix_ty ty1 ps)
(add_prefix_ty ty2 ps)
(add_prefix e1 ps)
| eTy ty => eTy (add_prefix_ty ty ps)
end.
Definition add_prefix_gd (gd : global_dec) (ps : env string) :=
match gd with
| gdInd nm i ctors b =>
let p := Extras.with_default "" (lookup ps nm) in
let ctors' :=
map (fun '(c_nm, tys) =>
(c_nm, map (on_snd (fun ty => add_prefix_ty ty ps)) tys)) ctors in
gdInd (p ++ nm)%string i ctors' b
end.
Definition add_prefix_genv (Σ : Ast.global_env) (ps : env string) :=
map (fun x => add_prefix_gd x ps) Σ.
fix rec (n : nat) (proj_tys : list (option ename * type)) :=
match proj_tys with
| [] => (* this is a return type of the constructor *)
mkApps (tRel (n + nparam)) (map tRel (rev (seq n nparam)))
| (proj, ty) :: tys' =>
let res :=
match ty with
| tyInd nm => if eqb nm ind_name then
tRel n else type_to_term ty
| tyApp ty1 ty2 =>
match (decompose_inductive ty1) with
| Some (nm, tys) =>
if eqb nm ind_name then
mkApps (tRel (n+nparam)) (map (compose (lift0 n) type_to_term)
(tys ++ [ty2])) else type_to_term ty
| None => type_to_term ty
end
| tyRel i => tRel (i+n)
| _ => type_to_term ty (* TODO: check how it works for other
type constructors applied to parameters of the inductive *)
end in tProd (of_ename proj) res (rec (1+n) tys')
end.
Definition mkArrows indn nparam := mkArrows_rec indn nparam 0.
Definition trans_one_constr (ind_name : ename) (nparam : nat) (c : constr) : term :=
let (ctor_name, tys) := c in mkArrows ind_name nparam tys.
Fixpoint gen_params n := match n with
| O => []
| S n' => let nm := ("A" ++ string_of_nat n)%bs in
let decl := (tSort Universe.type0) in
gen_params n' ++ [mkdecl (aRelevant (nNamed nm)) None (decl)]
end.
Definition trans_global_dec (gd : global_dec) : mutual_inductive_entry :=
match gd with
| gdInd nm nparam cs r =>
let (mp,unqualified_nm) := kername_of_string nm in
let oie := {|
mind_entry_typename := unqualified_nm;
mind_entry_arity := tSort Universe.type0;
mind_entry_template := false;
mind_entry_consnames :=
map (fun c => let (mp,unqualified_nm) := kername_of_string c.1 in
unqualified_nm) cs;
mind_entry_lc := map (trans_one_constr nm nparam) cs |}
in
let mie := {| mind_entry_record := if r then (Some (Some unqualified_nm)) else None;
mind_entry_finite := if r then BiFinite else Finite;
mind_entry_params := gen_params nparam;
mind_entry_inds := [oie];
mind_entry_universes := Monomorphic_ctx;
mind_entry_private := None; |} in
mie
end.
Fixpoint add_prefix_ty (ty : type) (ps : env string) :=
match ty with
| tyInd nm =>
let p := Extras.with_default "" (lookup ps nm) in
tyInd (p ++ nm)%string
| tyForall nm ty1 => tyForall nm (add_prefix_ty ty1 ps)
| tyApp ty1 ty2 => tyApp (add_prefix_ty ty1 ps) (add_prefix_ty ty2 ps)
| tyVar _ | tyRel _ => ty
| tyArr ty1 ty2 => tyArr (add_prefix_ty ty1 ps) (add_prefix_ty ty2 ps)
end.
Fixpoint add_prefix (e : expr) (ps : env string) :=
match e with
| eRel _ | eVar _ => e
| eLambda nm ty e1 => eLambda nm (add_prefix_ty ty ps) (add_prefix e1 ps)
| eTyLam nm e1 => eTyLam nm (add_prefix e1 ps)
| eLetIn nm e1 ty e2 => eLetIn nm (add_prefix e1 ps)
(add_prefix_ty ty ps)
(add_prefix e2 ps)
| eApp e1 e2 => eApp (add_prefix e1 ps) (add_prefix e2 ps)
| eConstr ind_nm ctor_nm =>
let p := Extras.with_default "" (lookup ps ind_nm) in
eConstr (p ++ ind_nm)%string ctor_nm
| eConst nm =>
let p := Extras.with_default "" (lookup ps nm) in
eConst (p ++ nm)%string
| eCase (ind_nm, tys) ty e1 brs =>
let p := Extras.with_default "" (lookup ps ind_nm) in
eCase ((p ++ ind_nm)%string, map (fun ty => add_prefix_ty ty ps) tys)
(add_prefix_ty ty ps)
(add_prefix e1 ps)
(map (on_snd (fun e => add_prefix e ps)) brs)
| eFix fix_nm nm ty1 ty2 e1 =>
eFix fix_nm nm
(add_prefix_ty ty1 ps)
(add_prefix_ty ty2 ps)
(add_prefix e1 ps)
| eTy ty => eTy (add_prefix_ty ty ps)
end.
Definition add_prefix_gd (gd : global_dec) (ps : env string) :=
match gd with
| gdInd nm i ctors b =>
let p := Extras.with_default "" (lookup ps nm) in
let ctors' :=
map (fun '(c_nm, tys) =>
(c_nm, map (on_snd (fun ty => add_prefix_ty ty ps)) tys)) ctors in
gdInd (p ++ nm)%string i ctors' b
end.
Definition add_prefix_genv (Σ : Ast.global_env) (ps : env string) :=
map (fun x => add_prefix_gd x ps) Σ.
A "library" of data types available by default
Module BaseTypes.
Definition Nat_name := to_string_name <% nat %>.
Definition Nat := Nat_name.
Definition Bool_name := to_string_name <% bool %>.
Definition Bool := Bool_name.
Definition List_name := to_string_name <% list %>.
Definition List := List_name.
Definition Prod_name := to_string_name <% prod %>.
Definition Prod := Prod_name.
Definition Unit_name := to_string_name <% unit %>.
Definition Unit := Unit_name.
Definition String_name := to_string_name <% string %>.
Definition String := String_name.
Import ZArith.
Definition Int_name := to_string_name <% Z %>.
Definition Int := Int_name.
End BaseTypes.
Module StdLib.
Import BaseTypes.
Definition Σ : global_env :=
[gdInd Unit 0 [("tt", [])] false;
gdInd Bool 0 [("true", []); ("false", [])] false;
gdInd Nat 0 [("Z", []); ("Suc", [(None,tyInd Nat)])] false;
(* we omit other constructors for now, since in general integer literals are not supported yet *)
gdInd Int 0 [("Z0", [])] false ;
(* just for remapping string to Coq string, constructors are not necessary *)
gdInd String 0 [] false;
gdInd List 1 [("nil", []); ("cons", [(None,tyRel 0);
(None,tyApp (tyInd List) (tyRel 0))])] false;
gdInd Prod 2 [("pair", [(None,tyRel 1); (None,tyRel 0)])] false].
Notation "a + b" := [| {eConst (to_string_name <% Nat.add %>)} {a} {b} |]
(in custom expr at level 0).
Notation "a * b" := [| {eConst (to_string_name <% Nat.mul %>)} {a} {b} |]
(in custom expr at level 0).
Notation "a - b" := [| {eConst (to_string_name <% Nat.sub %>)} {a} {b} |]
(in custom expr at level 0).
Notation "a == b" := [| {eConst (to_string_name <% Nat.eqb %>)} {a} {b} |]
(in custom expr at level 0).
Notation "a < b" := [| {eConst (to_string_name <% Nat.ltb %>)} {a} {b} |]
(in custom expr at level 0).
Notation "a <= b" := [| {eConst (to_string_name <% Nat.leb %>)} {a} {b} |]
(in custom expr at level 0).
Notation "'Zero'" := (eConstr Nat "Z") (in custom expr at level 0).
Notation "'Suc'" := (eConstr Nat "Suc") (in custom expr at level 0).
Notation "0" := [| Zero |] (in custom expr at level 0).
Notation "1" := [| Suc Zero |] (in custom expr at level 0).
Notation "'Zero'" := (pConstr "Z" [])
(in custom pat at level 0).
Notation "'Suc' x" := (pConstr "Suc" [x])
(in custom pat at level 0,
x constr at level 4).
Notation "a && b" := [| {eConst (to_string_name <% andb %>)} {a} {b} |]
(in custom expr at level 0).
Notation "~ a" := [| {eConst (to_string_name <% negb %>)} {a} |]
(in custom expr at level 0).
Definition true_name := "true".
Definition false_name := "false".
Notation "'True'" := (pConstr true_name []) (in custom pat at level 0).
Notation "'False'" := (pConstr false_name []) (in custom pat at level 0).
Notation "'Nil'" := (pConstr "nil" []) (in custom pat at level 0).
Notation "'Cons' y z" := (pConstr "cons" [y; z])
(in custom pat at level 0,
y constr at level 4,
z constr at level 4).
Notation "'True'" := (eConstr Bool true_name) (in custom expr at level 0).
Notation "'False'" := (eConstr Bool false_name) (in custom expr at level 0).
Notation "'star'" :=
(eConstr Unit "Coq.Init.Datatypes.tt")
(in custom expr at level 0).
End StdLib.